243 research outputs found

    The Impacts of Family Support on the Victims of Sex Trafficking Seeking Professional Care

    Get PDF
    According to the Polaris Project, the International Labor Organization estimates currently 4.5 million people are victims of human trafficking globally (2018). My project investigates the intersection of conventional health professionals’ treatments for the victims of sex trafficking and the role of supportive family in helping victims reintegrate into mainstream society. My thesis is, that there is, for victims to recover, a relationship between strong family support and professional health care. My research questions are: 1) Is there a relationship between strong family support of victims and successful reintegration into the mainstream of society after professional health care? 2) Will the victims with supportive families maintain an ordinary life after receiving professional care, compared to those with non (or no) supportive families? In order to answer my questions, I did an extensive literature research from books, peer-review journal articles, newspapers, and websites related to the case studies that were done in the United States and selected countries from Asian societies (Cambodia, India, Laos, Myanmar (Burma), Taiwan, Thailand, Vietnam, and Yunnan Province of China). My findings show that in the case of the United States, professional health care combined with strong family support, helps the victims achieve a better quality of life. However, in the case of Asian countries, it is more likely for victims to be introduced to sex trafficking through family members. In these cases, the treatment from professional health care is more complex and care for these victims need to take the cultural context into consideration and I suggest more research to be done in this area.https://digitalcommons.morris.umn.edu/urs_2018/1011/thumbnail.jp

    Domestic Violence and Its Impact on Children

    Get PDF
    Domestic violence (DV) is an ongoing phenomenon, detrimentally affecting society. Often, women suffer as direct victims of DV, but children who witness DV also experience adverse effects in these settings. For a single day in 2018, the U.S. Department of Health & Human Services reported, “19,673 children found safe-refuge in domestic violence emergency shelters or transitional housing programs, with another 5,888 children receiving non-residential services with their abused parent”. Research studies in the fields of Human Services, Sociology and Psychology have not fully explored this element of the family relationship. In my review, so far, I have learned that the few studies on this topic conclude child witnesses of DV suffer the same adverse consequences as those abused, normalize the DV witnessed, and will perpetuate the family dynamics they have observed. Future work on this topic should use narrative analysis from victims to better understand their patterns of thinking about this experience, and how support groups and services may help people break out of the cycle of violence.https://digitalcommons.morris.umn.edu/urs_2019/1007/thumbnail.jp

    Inelastic contribution of the resistivity in the hidden order in URu2Si2

    Full text link
    In the hidden order of URu2Si2 the resistivity at very low temperature shows no T^2 behavior above the transition to superconductivity. However, when entering the antiferromagnetic phase, the Fermi liquid behavior is recovered. We discuss the change of the inelastic term when entering the AF phase with pressure considering the temperature dependence of the Grueneisen parameter at ambient pressure and the influence of superconductivity by an extrapolation of high field data.Comment: 5 pages, 2 figures, SCES conference proceedin

    Similarity of Fermi Surface in the Hidden Order State and in the Antiferromagnetic State of URu2Si2

    Full text link
    Shubnikov-de Haas measurements of high quality URu2Si2 single crystals reveal two previously unobserved Fermi surface branches in the so-called hidden order phase. Therefore about 55% of the enhanced mass is now detected. Under pressure in the antiferromagnetic state, the Shubnikov-de Haas frequencies for magnetic fields applied along the crystalline c axis show little change compared with the zero pressure data. This implies a similar Fermi surface in both the hidden order and antiferromagnetic states, which strongly suggests that the lattice doubling in the antiferromagnetic phase due to the ordering vector QAF = (0 0 1) already occurs in the hidden order. These measurements provide a good test for existing or future theories of the hidden order parameter.Comment: 4 pages, 4 figure

    Suppression of hidden order in URu2Si2 under pressure and restoration in magnetic field

    Full text link
    We describe here recent inelastic neutron scattering experiments on the heavy fermion compound URu2Si2 realized in order to clarify the nature of the hidden order (HO) phase which occurs below T_0 = 17.5 K at ambient pressure. The choice was to measure at a given pressure P where the system will go, by lowering the temperature, successively from paramagnetic (PM) to HO and then to antiferromagnetic phase (AF). Furthermore, in order to verify the selection of the pressure, a macroscopic detection of the phase transitions was also achieved in situ via its thermal expansion response detected by a strain gauge glued on the crystal. Just above P_x = 0.5 GPa, where the ground state switches from HO to AF, the Q_0 = (1, 0, 0) excitation disappears while the excitation at the incommensurate wavevector Q_1 = (1.4, 0, 0) remains. Thus, the Q_0 = (1, 0, 0) excitation is intrinsic only in the HO phase. This result is reinforced by studies where now pressure and magnetic field HH can be used as tuning variable. Above P_x, the AF phase at low temperature is destroyed by a magnetic field larger than H_AF (collapse of the AF Q_0 = (1, 0, 0) Bragg reflection). The field reentrance of the HO phase is demonstrated by the reappearance of its characteristic Q_0 = (1, 0, 0) excitation. The recovery of a PM phase will only be achieved far above H_AF at H_M approx 35 T. To determine the P-H-T phase diagram of URu2Si2, macroscopic measurements of the thermal expansion were realized with a strain gauge. The reentrant magnetic field increases strongly with pressure. Finally, to investigate the interplay between superconductivity (SC) and spin dynamics, new inelastic neutron scattering experiments are reported down to 0.4 K, far below the superconducting critical temperature T_SC approx 1.3 K as measured on our crystal by diamagnetic shielding.Comment: 5 pages, 7 figures, ICN 2009 conference proceeding

    First Observation of Quantum Oscillations in the Ferromagnetic Superconductor UCoGe

    Full text link
    We succeeded in growing high quality single crystals of the ferromagnetic superconductor UCoGe and measured the magnetoresistance at fields up to 34T. The Shubnikov-de Haas signal was observed for the first time in a U-111 system (UTGe, UTSi, T: transition metal). A small pocket Fermi surface (F~1kT) with large cyclotron effective mass 25m0 was detected at high fields above 22T, implying that UCoGe is a low carrier system accompanyed with heavy quasi-particles. The observed frequency decreases with increasing fields, indicating that the volume of detected Fermi surface changes nonlinearly with field. The cyclotron mass also decreases, which is consistent with the decrease of the A coefficient of resistivity.Comment: 5 pages, 5 figures, accepted for publication in J. Phys. Soc. Jp

    Colloquium: Hidden Order, Superconductivity, and Magnetism -- The Unsolved Case of URu2Si2

    Full text link
    This Colloquium reviews the 25 year quest for understanding the continuous (second-order) mean-field-like phase transition occurring at 17.5 K in URu2Si2. About ten years ago, the term hidden order (HO) was coined and has since been utilized to describe the unknown ordered state, whose origin cannot be disclosed by conventional solid-state probes, such as x rays, neutrons, or muons. HO is able to support superconductivity at lower temperatures (Tc ~ 1.5 K), and when magnetism is developed with increasing pressure both the HO and the superconductivity are destroyed. Other ways of probing the HO are via Rh-doping and very large magnetic fields. During the last few years a variety of advanced techniques have been tested to probe the HO state and their attempts will be summarized. A digest of recent theoretical developments is also included. It is the objective of this Colloquium to shed additional light on the HO state and its associated phases in other materials.Comment: 25 pages, 16 figures, published in Reviews of Modern Physic

    On the search for the chiral anomaly in Weyl semimetals: The negative longitudinal magnetoresistance

    Full text link
    Recently, the existence of massless chiral (Weyl) fermions has been postulated in a class of semi-metals with a non-trivial energy dispersion.These materials are now commonly dubbed Weyl semi-metals (WSM).One predicted property of Weyl fermions is the chiral or Adler-Bell-Jackiw anomaly, a chirality imbalance in the presence of parallel magnetic and electric fields. In WSM, it is expected to induce a negative longitudinal magnetoresistance (NMR), the chiral magnetic effect.Here, we present experimental evidence that the observation of the chiral magnetic effect can be hindered by an effect called "current jetting". This effect also leads to a strong apparent NMR, but it is characterized by a highly non-uniform current distribution inside the sample. It appears in materials possessing a large field-induced anisotropy of the resistivity tensor, such as almost compensated high-mobility semimetals due to the orbital effect.In case of a non-homogeneous current injection, the potential distribution is strongly distorted in the sample.As a consequence, an experimentally measured potential difference is not proportional to the intrinsic resistance.Our results on the MR of the WSM candidate materials NbP, NbAs, TaAs, TaP exhibit distinct signatures of an inhomogeneous current distribution, such as a field-induced "zero resistance' and a strong dependence of the `measured resistance" on the position, shape, and type of the voltage and current contacts on the sample. A misalignment between the current and the magnetic-field directions can even induce a "negative resistance". Finite-element simulations of the potential distribution inside the sample, using typical resistance anisotropies, are in good agreement with the experimental findings. Our study demonstrates that great care must be taken before interpreting measurements of a NMR as evidence for the chiral anomaly in putative Weyl semimetals.Comment: 13 pages, 6 figure

    The IRAS 1-Jy Survey of Ultraluminous Infrared Galaxies: I. The sample and Luminosity Function

    Full text link
    A complete flux-limited sample of 118 ultraluminous infrared galaxies (ULIGs) has been identified from the IRAS Faint Source Catalog (FSC). The selection criteria were a 60 micron flux density greater than 1 Jy in a region of the sky delta > -40 deg, |b| > 30 deg. All sources were subsequently reprocessed using coadded IRAS maps in order to obtain the best available flux estimates in all four IRAS wavelength bands. The maximum observed infrared luminosity is L_ir = 10^{12.90} L_{sun}, and the maximum redshift is z = 0.268. The luminosity function for ULIGs over the decade luminosity range L_ir = 10^{12} - 10^{13} L_{sun} can be approximated by a power law Phi (L) ~= L^{-2.35} Mpc^{-3} mag^{-1}. In the local Universe z < 0.1, the space density of ULIGs appears to be comparable to or slightly larger than that of optically selected QSOs at comparable bolometric luminosities. A maximum likelihood test suggests strong evolution for our sample; assuming density evolution proportional to (1+z)^{alpha} we find alpha = 7.6+/-3.2. Examination of the two-point correlation function shows a barely significant level of clustering, xi (r) = 1.6 +/- 1.2, on size scales r ~= 22 h^{-1} Mpc.Comment: 18 pages of text, 10 pages of figures 1 to 6, 6 pages of tables 1 to 3, ApJS accepte
    corecore